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We gather, copy, and distribute information all the time. We make electronic copies and hard 
copies of electronic files. We make photocopies of the hard copies. And we have strict laws to 
prevent the unauthorized copying and distribution of information. But in the quantum world the 
laws of physics themselves impose restrictions on copying: it is impossible to make a perfect copy
of an unknown state. This restriction is expressed in the no-cloning theorem. 

The principle of superposition is the foundation of 
quantum mechanics. It says that when two evolving 
states solve the same Schrodinger equation, any linear 
combination of the two is also a solution. For this rea
son, waves from the two slits in the double-slit exper
iment simply add together to create the familiar inter
ference pattern. As it happens, this basic principle also 
prohibits the arbitrary copying of quantum states. 

LINEARITY, UNITARITY, AND CLONING 

To see why, imagine a machine that copies the state 
of a photon or an electron. When the original enters, 
two copies corne out, each having the same state as the 
original. If such a machine were successful, it would con
vert the state 1<» to 1<><», and 1<:1) to 1<:1<:1). (We use 
arbitrary symbols to represent arbitrary states.) The 
problem arises when one tries to send their linear com
bination, Is) al<» + bl<:l), through our hypothetical 
cloner. If 1<» and 1<:1) are cloned correctly, then be
cause of the linearity of quantum mechanics, the out
put for their superposition must be the superposition 
of the outputs, Ie) al<><» + bl<:l<:l). But we wanted 
Is)ls} (al<» + bl<:l))(al<» + bl<:l)), the original and a 
copy of Is). This is not the state Ie) we got! 

The difficulty sterns from the inherent nonlinearity of 
copying: When one asks for "two of the same", a square 
18)ls) of the original Is) is desired. This sets up a conflict 
with the strict linearity of quantum theory. Asa result, 
a single cloner cannot make a perfect copy of every quan
tum state. So what states can it clone? 

So far, we have relied on linearity. But quantum evo
lutions preserve probability. Thus, the norm (ele) of the 
state emerging from the copier must be the same as (sis) 
of the original. The only difference between these two 
scalar products, expressed in terms of 1<» and 1<:1), is 
in the cross term. Thus, the equation (<:11<» = (<:Ilo)2 
must be satisfied by any two states that are perfectly 
copied. This simple equation has profound consequences: 
it shows that a quantum copier can work only when the 
possibilities for the original are orthogonal~(<:II<» O. 
We could have also arrived at this conclusion by recogniz
ing that quantum evolutions are unitary-they preserve 

the scalar product of any two states. So, for states that 
can be copied we get again (<:II<» = (<:11<»2. This is 
no surprise; unitarity is a consequence of linearity and 
preservation of the norm. 

Quantum evolutions are reversible, so one can imagine 
running the copier "in reverse" , to delete the extra copy 
in states such as 1<><» or 1<:1<:1). Uncopying preserves the 
scalar product, so the simple equation above still applies. 
It follows that perfect copying or deleting is possible only 
for sets of states that are orthogonal. 

Our initial optimistic assumption that the copier will 
work "according to specs" for arbitrary 1<» and 1<:1) was 
naive. It dm be met only when the two states are orthog
onal, and even then one can copy these two states (and, 
possibly, their "orthogonal friends") only with a copier 
that works for this set of states. Thus, for example, one 
can design a copier for any orthogonal pair of polarization 
states of a photon, but a copier that works for {It), } 
will fail for {I /), I'\,) }, and vice versa. 

\Ve conclude that one cannot make a perfect copy of 
an unknown quantum state, as, without prior knowledge, 
it is impossible to select the right copier for the job. This 
is a common way of stating the no-cloning theorem. 

QUANTUM CRYPTOGRAPHY 

While the impossibility of cloning may seem at first 
an annoying restriction, it can also be used to one's ad
vantage. For instance, in the Bennett-Brassard quan
tum key distribution scheme, the sender, Alice, trans
mits many photons to the receiver, Bob, with the aim 
of ultimately creating a shared, secret, random string of 
zeros and ones. Such a random string can later be used 
as a key for encrypting and decrypting messages. In this 
particular scheme, each of Alice's photons is prepared at 
random in one of four possible polarization states: verti
cal, horizontal, +450 

, and -450 An eavesdropper, Eve, • 

would like to a copy of each photon for herself, but 
she also wants to pass an accurate copy on to Bob, or 
else her presence will be detected later when Alice and 
Bob check a random sample of their results. (They are 
checking specifically to see if Eve has disturbed their 
nals.) ::-Iotice, though, that-because of the no-cloning 



2 

theorem-Eve cannot succeed in this task. As we have 
just seen, if her cloning device can successfully copy the 
vertical and horizontal polarizations, it will fail to copy 
faithfully either of the two diagonal polarizations. Thus 
the prohibition against cloning is a feature of the world 
that helps us preserve prhracy. 

COPYING,.CAUSALITY, AND COLLAPSE 

If cloning were possible, one could communicate in
stantaneously over a distance. Suppose Alice and Bob 
share two photons in the entangled polarization state, 
1<;) ex 1<'--+ 1)- , a state that can be created, for exam
ple, by downconversion. The state 1<;) can be expressed 
in any orthogonal basis, e.g., 1<;) ex II' '\.)-1'\.1'); twins 
are always oriented along perpendicular axes. So to try to 
send information to Bob, Alice might measure her twin in 
one of two bases, {11), I<'--+n or {II'), I'\.n, in hopes that 
her choice of basis will make a difference at Bob's end. 
Alice's measurement collapses 1<;) into one of the states of 
the basis she chooses. So if she chooses {11), 1<'--+ n, Bob's 
photon will end up in one of the two states 1<'--+) or 11), 
whereas if she makes the other choice, Bob's photon will 
end up in one of the diagonal states. 

But Bob cannot read this message: a quantum state 
cannot be "found out" unless one knows what to look for. 
The simple question, "What's your state?" is against the 
rules. A quantum measurement is a multiple choice test. 
It poses questions such as, "Are you 11) or I<'--+)?" Eigen
states of the measured observable are the only admissible 
answers. If Bob measures the wrong observable he ran
domizes the state of his twin, erasing Alice's message. 

Direct measurements don't work, but what if Bob were 
to clone his twin first? Copying 1 or I' into 111 ... 
or I'l'l' ... introduces redundancy, allowing for error 
correction. Even a "wrong measurement" on some of the 
copies would not erase Alice's message, as there are other 
copies to ask the complementary question. And the right 
question leads to a consensus-all copies give the saine 
answer in the multiple choice test. 

So, perfect copying of unknown states would allow su
perluminal communication, threatening causality. The 
no-cloning theorem precludes this. But what happens if 
Bob uses a more limited copier, a copier, say, just for 
the basis {Il),I<'--+)}? If Alice happens to choose that 
basis, the copier works. If she chooses the other ba
sis, the copier produces a state proportional either to 
1111·· .)+ ...) or to 1111·· .)- 1<'--+<'--+<'--+ ...). But 
an equal mixture of these two states is, unfortunately for 
Bob, indistinguishable from an equal mixture of 1111 ... ) 
and 1<'--+<'--+<'--+ ...). (In fact, each of the complicated states 
by itself is already difficult to distinguish from such a 
mixture.) So this kind of redundancy is of no use for com
munication. The redundancy is nevertheless of interest, 
as it sheds light on the nature of quantum measurements. 

Our copier acts as an amplifier: it is restricted to a pre-
ferred basis, in consonance with the fact that a quantum 
measurement is a multiple choice test. 

Analogies between a measuring apparatus and a copier 
are suggestive. Both impose their own choice of preferred 
states on the preexisting state of the system. Only states 
that respect this "symmetry breaking" can be found out 
or copied. Other states are converted into superpositions 
of redundant branches. In the end, an entangled state 
that emerges at the output of the device is difficult to 
distinguish from their mixture. 

APPROXIMATE CLONING 

If the exact cloning of arbitrary states is impossible, to 
what extent is it possible to clone states approximately? 
Assuming that the cloner handles all input states equally 
well and makes two equally good copies in every case, the 
answer to this question is known: for a two-state system, 
each clone, if subjected to a test to see if it matches the 
initial state, will at best pass the test with probability 
5/6. (It is interesting that if the fidelity were any better 
one could use the approximate cloner, together with en
tanglement, to transmit signals faster than light!) One 
can do better (without admitting superluminal communi
cation) if one tailors the cloning device to a more limited 
set of states. For example, if one wants to clone only 
linear polarization states, and not circular or elliptical 
polarizations, the optimal fidelity allowed by quantum 
mechanics is 1/2 + 1/vB 0.85. Only linear polariza
tions are used in the Bennett-Brassard scheme, and in
deed, a strategy based on the optimal cloning of linear 
polarizations is one of the best ways to eavesdrop against 
that scheme. 

Approximate cloning devices constructed in the lab 
have come close to acheiving the optimal values of the 
fidelity, but with a limited probability of success on any 
given triaL In some cases the experiments are based on 
linear optics, with success being conditioned on specific 
measurement outcomes. Other experiments are based on 
nonlinear downconversion, in which a strong laser pulse 
facilitates the approximate cloning of a single photon. 

The more one restricts the set of possible states, the 
better chance one has of producing a faithful clone. The 
ultimate restriction, for the purpose of cloning, is to limit 
oneself to a set of mutually orthogonal states. As we 
have seen, this is the oniy case in which the cloning can 
be perfect. And this possibility explains why the cloning 
of a sheep, for example, or the everyday operation of a 
photocopier, does not violate the no-cloning theorem. 

No one is shocked to learn that quantum mechanics 
does not permit faster-than-light communication. Some
how quantum mechanics "knows" that it should restrict 
access to information. But it is interesting to see exactly 
how nature manages to enforce this prohibition. The no



3 

cloning theorem provides a glimpse into its methods. N. J. Cerf and J. Fiurasek, "Optical Quantum V!l}UIJll1'>-

Further Reading A Review," Progress in Optics, 49, 455 (2006). 

V. Scarani, S. Iblisdir, N. Gisin, and A. Acin, "Quantum 
cloning," Rev. Mod. Phys. 77, 1225-1256 (2005). 


